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Relationship between directed percolation and the synchronization transition
in spatially extended systems
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We study the nature of the synchronization transition in spatially extended systems by discussing a simple
stochastic model. An analytic argument is put forward showing that, in the limit of discontinuous processes, the
transition belongs to the directed percolation~DP! universality class. The analysis is complemented by a
detailed investigation of the dependence of the first passage time for the amplitude of the difference field on the
adopted threshold. We find the existence of a critical threshold separating the regime controlled by linear
mechanisms from that controlled by collective phenomena. As a result of this analysis, we conclude that the
synchronization transition belongs to the DP class also in continuous models. The conclusions are supported by
numerical checks on coupled map lattices too.
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I. INTRODUCTION

Synchronization in dynamical systems has recently
come the subject of an intensive research activity for vari
reasons that range from the application to transmission
information to the spontaenous onset of coherent beha
and also because it is one of the mechanisms controlling
degree of order present in a chaotic evolution. Most of
attention has been, so far, focused on the behavior of l
dimensional systems. As a result of these investigations,
eral kinds of synchronizations have been identified~the most
important being phase and complete synchronization! and
the corresponding transition scenarios characterized@1#.

More recently, the interest has shifted towards hig
dimensional chaos and, specifically, towards the behavio
extended systems, a context in which an overall picture
still lacking. In this paper, we devote our interest to compl
synchronization in lattice systems. This kind of synchroni
tion has been introduced and studied into two different s
ups. In the former one, identical copies of a given syst
~with different initial internal states! converge to the sam
trajectory, when forced with the same random signal. Th
so-called stochastic, synchronization can occur only if
dynamics resulting from the stochastic forcing becomes
early stable, i.e., the maximum Lyapunov exponent is ne
tive @2–6#. In the latter setup, two identical systems a
coupled together: if the coupling strength is strong enou
both eventually follow the same, chaotic, trajectory. This
the so-called chaotic synchronization. For it to be observ
it is sufficient that the transverse Lyapunov exponent is ne
tive @7#. Therefore, in low-dimensional systems, the synch
nization transition can always be reduced to a linear stab
problem.

On the other hand, recent numerical investigations@8,9#
indicate that the synchronization scenario in spatially
tended dynamical systems exhibits more complex and in
esting features. In fact, the addition of the spatial struct
may turn the linear stability problem of low-dimensional sy
1063-651X/2003/67~4!/046217~10!/$20.00 67 0462
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tems into a nonequilibrium phase-transition problem.
In analogy to low-dimensional systems, various coupli

schemes have already been considered. For instance,
chastic synchronization’’ has been studied in coupled m
lattices ~CMLs!, by adding the same spatiotemporal noi
j(x,t) to different trajectories,u1(x,t) and u2(x,t), of the
same system@8#, according to the following scheme:

ui~x,t11!5 f @ui~x,t !1¹«
2ui~x,t !#1sj~x,t !, i 51,2,

~1!

where

¹«
2u~x,t ![

«

2
u~x11,t !1

«

2
u~x21,t !2«u~x,t ! ~2!

is the shorthand notation for the discretized Laplacian ope
tor (« plays the role of a diffusion constant! and f @x# is a
map of the unit interval able to generate chaotic behav
Moreover,s is the amplitude of the forcing term,x is an
integer index labeling the lattice sites,t is a discrete time
variable and the noise term is assumed to be bounded ad
correlated in space and time, i.e.,^j(x,t)j(y,s)&}dx,yd t,s .
Synchronization is possible when the differencew(x,t)
5uu1(x,t)2u2(x,t)u between simultaneous configuration
of the two systems converges everywhere to zero. The
bility coefficient of the solutionw(x,t)50 is usually called
the transverse Lyapunov exponent~TLE!. In the context of
stochastic synchronization, the evolution of a smallw(x,t)
reduces to the tangent dynamics of the single CML, so t
the TLE coincides with the maximum Lyapunov exponent
the noise-affected dynamics. Accordingly, synchronizat
can arise only when the stochastic forcing induces a nega
maximum Lyapunov exponent. This is possible if the pro
ability distribution of the state variable mostly concentra
in the region of the interval where the map acts as a cont
tion.

Alternatively, one can study the behavior of two direct
coupled systems@9#:
©2003 The American Physical Society17-1
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u1~x,t11!5~12s! f @u1~x,t !1¹«
2u1~x,t !#1s f @u2~x,t !

1¹«
2u2~x,t !#,

u2~x,t11!5~12s! f @u2~x,t !1¹«
2u2~x,t !#1s f @u1~x,t !

1¹«
2u1~x,t !#. ~3!

At variance with the previous case, the coupling strengths
modifies the evolution law ofw(x,t), by adding a stabilizing
term, while it leaves unaffected the dynamics of the fu
synchronized regime. Accordingly, the TLE may becom
negative, while the maximum Lyapunov exponent, u
changed, remains positive.

While the negativity of the TLE is always a necessa
condition to observe synchronization in spatially extend
systems, for smooth enough dynamical systems, it prove
be sufficient too. In fact, the study of stochastic and cha
synchronization, carried on in Refs.@8# and@9#, respectively,
have shown that synchronization occurs as soon as the
becomes negative and, correspondingly, the propagation
locity of finite-amplitude perturbation vanishes. In particul
Ahlers and Pikovsky@9# argue that the dynamics of th
coarse-grained absolute valuew̃ of the difference field is
described by the following stochastic partial different
equation:

] tw̃~x,t !5D¹2w̃~x,t !1c1w̃~x,t !2c3w̃3~x,t !

1w̃~x,t !h~x,t !, ~4!

where D.0, c3.0 and the Gaussian noise termh is d
correlated in space and time, i.e.,^h(x,t)h(y,s)&}d(x
2y)d(t2s). This equation is formally equivalent to th
mean–field equation of the class of multiplicative no
~MN! nonequilibrium critical phenomena@10#. By a Hopf-
Cole transformationh(x,t)52 ln w̃(x,t), the above equation
can be transformed into@11#

] th~x,t !5D¹2h~x,t !2D@¹h~x,t !#22S c12
1

2D
1c3e22h(x,t)1h~x,t ! ~5!

describing the critical behavior associated with the depinn
transition of a Kardar-Parisi-Zhang~KPZ! interface from a
hard substrate. Numerical analysis confirms that the crit
exponents evaluated for the two different coupling schem
are both compatible with those predicted for the MN mod

On the other hand, it has been observed that in the p
ence of strong and localized nonlinearities, the nonsynch
nized regime may coexist with a negative TLE@8,9#. In this
case, the transition does occur when the propagation velo
of finite-amplitude perturbations vanishes, while its critic
properties turn out to belong to the class of directed per
lation ~DP!. Such an equivalence has been found by notic
that the fraction of nonsynchronized sites„defined as those
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points whereuw(x)u is larger than some small fixed thre
hold… is the appropriate order parameter corresponding to
fraction of active sites in DP.

In this case, one cannot follow the same derivation
above, because even close to the critical point, the evolu
equation forw(x,t) cannot be linearized, since it is precise
the nonlinear effects which guarantee a propagation of fin
amplitude perturbations in the presence of a negative TLE
is worth recalling that in the formulation of Reggeon fie
theory, the DP transition is described by the effective eq
tion @12–14#

] tr~x,t !5D¹2r~x,t !1c1r~x,t !2c2r2~x,t !

1Ar~x,t !h~x,t !, ~6!

wherer(x,t) is the density of active sites andc2.0. Behind
the similarity between this and Eq.~4!, one should notice the
crucial difference in the noise amplitude: the square-root v
sus linear dependence onr is indeed responsible for turnin
the MN critical behavior into a DP-like one. In this paper, w
plan to explain why the presence of a discontinuity~or a
strong nonlinearity! may lead to the effective equation~6!.
To this aim, in Sec. II we introduce a simple random mu
plier ~RM! model as an effective equation for the time ev
lution of the difference variablew(x,t) for discontinuous and
strongly nonlinear CMLs. This model was originally intro
duced in Ref.@15# to account for the mechanism of prop
gation of information in stable chaotic systems. We analy
its phase diagram, and we also discuss how the synchron
tion transition may be modified when a true discontinuity
the dynamics is changed into a strongly nonlinear continu
mapping. The relation between the RM model and the
mean-field equation~6! is analyzed in Sec. III.

There is a further basic question that will be addres
here. All microscopic models that are known to exhibit a D
critical behavior are defined by referring to discrete and fin
state variables, such as the probabilistic cellular automa
model proposed by Domany and Kinzel@16#. In such cases
the so-called ‘‘absorbing state’’ can be unambiguously id
tified. For instance, in the cellular automaton of Ref.@16#, a
sequence of ‘‘0’’s can only change from its boundaries~this
is the reason they are defined as contact processes!. In the
context of synchronization, the dynamical variable is co
tinuous and the conditionw(x,t)50 is never exactly ful-
filled at any finite time, even in a system of finite size. As
consequence, in numerical experiments@8,9# one has to fix a
small, but somehow arbitrary, threshold value, below wh
the trajectories are assumed to be synchronized. The s
numerical simulations show that, independently of the d
namical rule, when the space average ofw(x,t) decreases
below a threshold valueO(1025) it does not grow again.
However, one cannota priori exclude that a large fluctuatio
of some local multiplier drives the system out of this weak
absorbing state. On the contrary, it looks plausible to assu
that in an infinite system such a large fluctuation occurs w
probability one. In Sec. IV we tackle the problem of th
existence of an effective absorbing state even in the pres
of a continuous state variable. The study of the first pass
7-2
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RELATIONSHIP BETWEEN DIRECTED PERCOLATION . . . PHYSICAL REVIEW E67, 046217 ~2003!
time required for the space average of the difference varia
w(x,t) to go through a series of decreasing thresholds cl
fies that, contrary to intuition, it is possible to assign
effective finite ‘‘measure’’ to the synchronized, i.e., abso
ing, state. Finally, conclusions are drawn in Sec. V.

II. RANDOM MULTIPLIER MODEL: DEFINITION
AND PHASE DIAGRAM

In this section, we introduce the RM model with the a
of closely reproducing the synchronization transition occ
ring in coupled piecewise linear maps of the type

f ~x!5H x/a1 , 0<x,a1

12~x2a1!/a2 , a1<x,a11a2

~x2a12a2!/a1 , a11a2<x<1,

~7!

where 0,a1,1 and 0,a2,12a1. For any a2.0, the
map is continuous with a highly expanding middle bran
~whena2!1). In the limit a250, f (x) reduces to the dis
continuous Bernoulli map with expansion factor 1/a1.

In the bidirectional synchronizationsetup~3!, the corre-
sponding TLE is@9#

l'5lM1 ln~122s!, ~8!

wherelM is the maximum Lyapunov exponent of the sing
uncoupled, chain. Therefore, a linear stability analysis in
cates that a small deviationw(x,t)5uu1(x,t)2u2(x,t)u is
contracted whens.(121/lM)/2. However, this is not the
whole story even in the absence of multiplier fluctuatio
because wheneveru1(x,t) andu2(x,t) fall on different sides
of the map discontinuity,w(x,t) becomes at once of order 1
being amplified by a factor close to 1/w(x,t). The probabil-
ity of such events depends on the probability density of
variablesui : in the case of a sufficiently smooth distributio
across the discontinuity, the probability is, to a leading ord
proportional tow itself @17#. The same qualitative behavio
also occurs fora2.0, except that now, whenw,a2, the
amplification factor cannot be larger than (122s)a2. More-
over, the probability of such amplifications does no long
depend onw.

In the following, instead of determining the local dynam
ics of w from the actual evolution ofu1(x,t) andu2(x,t), we
prefer to write a self-contained equation, where the oc
sional amplifications follow from a purely stochastic dyna
ics that simulates the CML. More precisely, we introduce
model

v~x,t !5~11¹«
2!w~x,t !, ~9!

with
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w~x,t11!

5H 1, w.p. p5av~x,t !

av~x,t !, w.p. 12p
if v~x,t !.D,

w~x,t11!

5H v~x,t !/D, w.p. p5aD

av~x,t !, w.p. 12p
if v~x,t !<D, ~10!

wherea andD replace (122s)/a1 anda2 /(122s), while
w.p. is a shorthand notation for ‘‘with probability.’’ Only
positive multipliers are assumed in order to guarantee a p
tive definedw(x,t) ~simulations do confirm that the sig
does not play a relevant role!. Finally, periodic boundary
conditions are assumed on a lattice of sizeL. In what fol-
lows, space and time are expressed in arbitrary lattice u
while the difference variablew(x,t) and the control param
etersa andD are dimensionless quantities.

The advantage of playing with this model is that it expli
itly avoids the possibly subtle correlation that may be gen
ated during the deterministic evolution of the CML, an
thereby spoiling the asymptotic behavior of the observab
we are interested in. Besides the probabilistic, rather t
deterministic, choice of the amplification factor, the on
other difference between the stochastic model~10! and the
original set of two coupled CMLs is the distribution of th
amplification factors that is dichotomic in the former cas
We see no reason why this difference should affect the tr
sition scenario.

Moreover, in order to maximize propagation effects~that
are responsible for the propagation of finite-size pertur
tions! we shall restrict to the case«52/3 ~the so called
‘‘democratic’’ coupling!. Some rough numerical analyses d
not, indeed, reveal qualitative changes when« is varied
around 2/3.

The most general way of testing the stability of the sy
chronized phase is by monitoring the evolution of a drop
of the unsynchronized phase. By denoting withN(t) the
droplet size, i.e., the number of unsynchronized sites, at t
t, the propagation velocity can be defined as

vF[ lim
t→`

N~ t !2N~0!

2t
. ~11!

A negative TLE@the maximum Lyapunov exponent of mod
~10!# implies that any infinitesimal perturbation does dec
In spite of this linear stability, in Ref.@15# it has been shown
that vF can be positive, implying that the unsynchroniz
phase sustains itself and invades the synchronized one
performing detailed simulations for different values of t
parametersa and D, we have been able to construct th
phase diagram plotted in Fig. 1. The solid line, along wh
vF50, separates the synchronized from the unsynchron
phase~shaded region!. The dashed line, along which the TL
is equal to 0, splits the unsynchronized phase into a line
stable~I! and unstable (II ) region. In the former one~ending
approximately atD5Dc'0.15), the nonlinear amplification
7-3
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GINELLI et al. PHYSICAL REVIEW E 67, 046217 ~2003!
mechanism prevails over the linear contraction induced
the negative TLE. AboveDc , the TLE changes sign exactl
wherevF vanishes too.

Numerical analysis of stochastic synchronization in
CML @8# suggests that when the TLE vanishes together w
vF , the critical properties of the synchronization transiti
are those of the MN class, while the transition is DP-li
whenevervF only vanishes~the TLE remaining negative!.

Before entering into a quantitative discussion about
nature of the transition in the present model, it is worth n
ticing a difference between regimesI and II . The linear in-
stability in II ensures that any finite perturbation of a sy
chronized state remains finite forever independently of
chain length. On the other hand, inI, a finite perturbation
eventually dies in a finite chain. The reason why the synch
nized regime can nevertheless be considered unstable is
the average life time of the perturbation diverges expon
tially with the chain length. This is a typical property o
systems in the DP universality class, and it can be tra
back to the peculiar nature of the ‘‘square root’’ noise amp
tude in Eq.~6! @18#.

A preliminary numerical analysis of the critical properti
of the RM model forD50 and 0.01 has already been pu
lished in Ref. @15#. Here we both perform more accura
simulations and extend the previous study to larger val
(D50.1 and 0.2! in order to find a signature of the change
critical behavior. In all cases,a is chosen to be the contro
parameter, while the averaged~over different noise realiza
tions! densityr(t) of unsynchronized sites will be the orde
parameter. The definition ofr requires one to fix a smal
thresholdW to discriminate between synchronized@w(x,t)
,W# and unsynchronized@w(x,t).W# sites. In principle,
r(t) depends onW, both because the perturbation reach
different thresholds at different times and resurgencies
occur. A numerical analysis, however, indicates that, in pr
tice, if W is chosen on the order or smaller than 1025 no
appreciable differences are observed. We shall come bac
this problem in Sec. IV, to provide a more sound justificati
for the adopted procedure.

In order to test the relationship between synchronizat

FIG. 1. Phase diagram of the RM model. In the two shad
regions (I andII ) the synchronized phase is unstable; in fact, abo
the solid linevF.0. Along the dashed line, the TLE changes sig
so that regionI corresponds to the linearly stable, but nonlinea
unstable regime, whileII corresponds the linearly unstable regio
Above D5Dc , the TLE vanishes together withvF .
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transition and the DP critical phenomenon, we have inve
gated the scaling behavior in the vicinity of the transition.
DP it is known that, at criticality, the dependence of t
densityr(t) on t and L is described by the scaling relatio
@14#

r~ t !5L2dzgS t

LzD , ~12!

wherez is the so-called dynamical exponent accounting
the dependence of the average timet needed forr to vanish
with the system sizeL @19#:

t;Lz, a5ac . ~13!

Since for smallu5t/Lz, the scaling function behaves a
g(u);u2d, the exponentd turns out to describe the powe
law decay ofr(t):

r~ t !;t2d, a5ac . ~14!

Finally, the exponentb characterizes the scaling behavior
the saturated density of active sitesr0 as a function of the
distance from the critical value:

r0;~a2ac!
b, a.ac . ~15!

In analogy with usual nonequilibrium phase transitions,z, d,
and b are expected to characterize all critical properties
the synchronization transition as well. In fact, simple dime
sional arguments show that the exponents ruling the po

d
e
,

FIG. 2. Power law scaling behavior in the RM model. In a
graphs, the dashed lines correspond to the expected scaling b
ior @DP in ~a!, ~b!, and~c!, and MN in ~d!#. ~a! Absorption time as
a function of system size forD50. Triangles corresponds toa
50.6070, squares toa50.6063, and circles toa50.6051.~b! Den-
sity of unsynchronized sites as a function of time forD50.1. The
five solid lines correspond to~from top to bottom! a50.591, 0.59,
0.58955, 0.5893, and 0.5890, respectively.~c! Asymptotic density
of unsynchronized sites as a function of the distance from critica
Circles correspond toD50.1 and squares toD50.2. ~d! Density of
unsynchronized sites as a function of time forD50.2. The five
solid lines correspond to~from top to bottom! a50.568, 0.5675,
0.5668, 0.5664, and 0.5662. All the graphs are plotted in dou
logarithmic scales.
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TABLE I. Numerical results concerning thez, d, andb exponents of the RM model are compared w
the best available estimates. Values forac indicate our best estimates of the critical point. Errors have b
estimated as the maximum deviation from linearity in the log-log plot that it is used to extract the scalin
The asterisk indicates a value compatible with the theoretically predicted one,z51.5 ~see the text!.

D50 D50.01 D50.1 D50.2 DP MN

z 1.5660.06 1.5860.02 1.5460.06 1.5* 1.58074561026 1.5360.07
d 0.15560.005 0.1560.01 0.15960.002 1.260.1 0.1594646631026 1.1060.05
b 0.2460.02 0.2760.01 0.2760.01 1.860.1 0.2764866631026 1.7060.05
ac 0.6063 . . . 0.605 . . . 0.5895 . . . 0.5668 . . .
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law divergence exhibited by space- and time-correlat
functions~while approaching the critical point! are linked to
the previous ones by the standard relations

n i5
b

d
, n'5

n i

z
. ~16!

Some of the scaling behaviors have been plotted in Fig.
show the quality of the results, while a complete summary
the exponents are reported in Table I, together with the b
known estimates for the DP@20# and the MN@21# class.

The dynamical exponent has been estimated by avera
the behavior of relatively small systems~from L525 to L
5210) over a large number of noise realizations~of order
103). In order to minimize finite-size effects, the exponentsd
and b have been estimated from the time evolution of
single system of sizeL5220, relying on the large size to
reduce statistical fluctuations. In the MN context we have
been able to estimatez through the measure of the avera
synchronization time, but we verified, through finite siz
scaling@Eq. ~12!#, that the value of the dynamical expone
is compatible with the theoretical prediction.

Interestingly, similar results are obtained by adopting
different order parameter, i.e., the space averaged differe
variable w(t)5^w(x,t)&x . Also in this case, botĥw(t)&
~where^•& denotes an ensemble average! and the absorption
time t1, defined as the average time required forw(t) to
become smaller than some thresholdW, are found to follow
the same critical scaling laws. The application of coar
graining suggests that the space average is the ‘‘natural’
der parameter in the context of both equilibrium and no
equilibrium critical transitions.

III. FROM THE RM MODEL TO THE DP FIELD
EQUATION

In this section we investigate the connection between
RM model and the DP field equation~6!. Let us first consider
the simple caseD50 that corresponds to a discontinuous b
otherwise uniformly contracting local map. Eq.~10! can be
recast as

w~x,t11!52av~x,t !2a2v2~x,t !1g~v !j8~x,t !, ~17!

wherej8(x,t) is a zero-averaged-correlated noise with uni
variance. In fact,
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j8~x,t !5
1

g~v !
@jv~x,t !2^jv&#, ~18!

where

jv~x,t !5H 12v~x,t !, w.p. p5av~x,t !

~a21!v~x,t !, w.p. 12p
~19!

and

^jv&5~2a21!v2a2v2, ~20!

g2~v !5^jv
2&2^jv&

25a23a2v213a3v3

25a4v4. ~21!

If we now introduce the coarse grained variabler(x,t)
5w(x,t) ~where the bar denotes an average over a suita
space-time cell!, we have that v(x,t)5r(x,t)
1(«/2)¹2r(x,t) so that Eq.~17! yields

] tr~x,t !5a«¹2r~x,t !1~2a21!r~x,t !2a2r2~x,t !

1a2«r~x,t !¹2r~x,t !1
~a«!2

4
@¹2r~x,t !#2

1gS r~x,t !1
«

2
¹2r~x,t ! Dh~x,t !, ~22!

where, according to the central limit theorem@22#, the coarse
grained noise termh(x,t) is Gaussian andd correlated in
time and space. According to standard renormalization-gr
arguments,@14,12,13# the terms of order (¹2r)2 and r¹2r
can be shown to be irrelevant, as well as the terms of or
higher than or equal tor andA¹2r appearing in the noise
amplitudeg@r1(«/2)¹2r#.

From the definition~21! of g and after discarding the ir
relevant terms, the above equation reduces to

] tr~x,t !5a«¹2r~x,t !1~2a21!r~x,t !2a2r2~x,t !

1Aar~x,t !h~x,t !, ~23!

which is nothing but Eq.~6!, thus confirming the numerica
indications that the synchronization transition in discontin
ous CMLs can be traced back to a DP nonequilibrium ph
7-5
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transition. However, since the derivation of the DP Lange
equation is partly based on heuristic arguments, a more
orous analysis is still needed.

Let us now turn our attention to the more general c
D.0, which corresponds to a continuous local mappi
According to Eq.~10!, we now have to deal with two differ
ent kinds of noise, depending whetherv(x,t).D or v(x,t)
<D. By repeating the same formal derivation as in the p
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vious case, we find that Eq.~23! still holds whenr(x,t)
.D, while for r(x,t),D it must be replaced by the equa
tion

] tr~x,t !5
a«

2
~22aD!¹2r~x,t !1~2a212a2D!r~x,t !

1h~w!h~x,t !, ~24!

where
h~w!5r~x,t !Aa

D
23a21~215D!a32~312D!Da41~12D2!Da5. ~25!
ee,
ful,
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he

-
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Accordingly, in Eq.~24!, the noise amplitude is proportiona
to the field itself, so that one should be led to the na
conclusion that the DP critical behavior is destroyed as s
asD is finite, or, equivalently, thatany CML system charac-
terized by a continuous local mapping cannot exhibit a D
like synchronization transition. However, the simulations d
scribed in Sec. II suggest that DP-like transition can still
found for small but finite values ofD. In the next sections
we shall present theoretical arguments supporting such
merical findings.

IV. FIRST PASSAGE TIMES

In this section we clarify the problem of how and when
is possible to observe a DP-like scenario in models like
RM one, with no clearly identifiable absorbing state. As
ready noted in Ref.@15#, in any finite system~of lengthL)
there always exists a finite probability for a generic config
ration to be contracted forever, i.e., absorbed. A lower bo
to such a probability is~in the discontinuous case!

P5F )
n51

`

~12wMan!GL

, ~26!

where

wM5max
x

w~x,0!. ~27!

However, since the null state,w(x,t)50, is reached in an
infinite time, this configuration cannot be attained with p
fect accuracy in numerical simulations and one is, in fa
obliged to fix a small but finite threshold.

The best way we have found to characterize the dep
dence of the perturbation evolution on its size is through
indicator closely related to the finite-size Lyapunov expon
~FSLE! introduced in Ref.@23#. With reference to a pertur
bation initially set equal to 1@w(x,0)51, x51, . . . ,L#,
we introduce thefirst passage timetq(W), defined as the
~ensemble! average time required by theqth norm of the
state vectorw(t),
e
n

-
-
e

u-

e
-

-
d

-
t,

n-
n
t

uuw~ t !uuq5F 1

L (
i 51

L

wi
q~ t !G1/q

~28!

to become smaller than some thresholdW for the first time.
At variance with Refs.@23,24#, we do not care if the evolu-
tion of the perturbation is non monotonous: as we shall s
in this context, the analysis does not only remain meaning
but even more, it allows one to identify the reason for t
existence of a DP-like scenario even in the context of
continuous model.

At variance with the standard Lyapunov exponent, t
FSLE does depend on the choice of the norm@in particular,
on theq value in Eq.~28!#. This circumstance is often con
sidered as a difficulty, hindering a proper definition of FSL
we prefer to see it as an indication of a richer class of p
nomena associated with the evolution of finite-amplitu
perturbations. It has been noticed in Sec. II that the ‘‘natur
order parameter of the DP transition is the spatial averag
the state vector. Accordingly, we have decided, in the pres
context, to fixq51 ~that corresponds to performing an arit
metic average! and to drop, for the sake of simplicity, th
dependence onq.

The FSLEL(W) can be introduced by first fixing a se
quence of decreasing thresholdsWn , n50,1,2, . . . ,

Wn

Wn21
5r , r ,1, ~29!

and by then defining

L~Wn!5
ln r

t~Wn11!2t~Wn!
, ~30!

where the dependence on the ‘‘discretization’’ lnr is left im-
plicit. In the limit r→1, the definition becomes

L~W!5F dt~W!

d~ ln W!G
21

. ~31!

In the further limit W→0, L(W) reduces to the usua
Lyapunov exponentl, independently of the adoptedq value.
WhenD50, l5 ln a.
7-6
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A. Uncoupled limit

In the uncoupled limit,«50, each site converges inde
pendently to the synchronized state~as long asa,1). In
spite of the low dimensionality of the problem, even in th
case, an analytic expression for the FSLE can be obta
only at the expense of introducing further approximatio
We shall see that the resulting expression can be neverth
profitably used even in the coupled regime.

By setting r 5a and restricting ourselves to the caseD
50, it easy to show~see the Appendix! that

t~Wn!5
t~Wn21!11

12Wn
, ~32!

wheret(W0)50, Wn5an. By inserting Eq.~32! in Eq. ~30!
one obtains

L~Wn!5
12aWn

11aWnt~Wn!
ln a. ~33!

Equation~32! implies that, forn→`,

t~Wn!;n1n05 ln Wn ln a1n0 . ~34!

By inserting Eq. ~34! into Eq. ~33! and recalling thatl
5 ln a ~for D50), we obtain

L~Wn!5
12aWn

11an0Wn1~a/l!Wn ln Wn
l. ~35!

As we are interested in describing the region whereWn
!1, and owing to relative smallness ofa(a!n0), this equa-
tion can be further simplified to

L~W!5
l

11b0W2b1W ln W
, ~36!

where we have also dropped the unnecessary dependen
the indexn. In theW→0 limit, the leading correction to the
standard Lyapunov exponent is provided by the term prop
tional to b1. From the structure of Eq.~36!, it is natural to
interpret the inverse ofb1 as the critical thresholdWc , below
which the dynamics of the uncoupled system is domina
by the maximum Lyapunov exponentl.

From Eq.~36! and by integrating Eq.~31!, it is also pos-
sible to derive an analytic expression for the first pass
time t(W),

t~W!5E L~W!21d~ ln W!

'
1

l
@ ln W1~b01b1!W2b1W ln W#1b2 , ~37!

whereb2 is the integration constant. In principle, one cou
imagine of determiningb2 by imposing t(1)[b22b1 /l
equal to 0, since the evolution starts precisely fromW51.
However, we cannot expect our perturbative formula to
scribe correctly the initial part of the contraction proce
Therefore,b2 must be determined independently.
04621
ed
.

ess

on

r-

d

e

-
.

B. General case and scaling arguments

In the coupled case, we have not been able to derive
analytical expression for the FSLE. Nevertheless, a comp
son with the numerical results has revealed that Eqs.~36! and
~37! describe in a reasonable way the dependence ofL andt
on W even in the continuous model. However, whilel still
denotes the standard Lyapunov exponent of the process
can thus be computed independently, nowb0 , b1, and b2
have to be determined by fitting the numerical data. We h
also preferred to keep the term proportional tob0 ~relevant
only for relatively largeW values!, since its presence gua
antees a much better reproduction of the numerical data
Fig. 3~a!, we see that Eq.~37! provides a good parametriza
tion of the numerically determinedt-values over a wide
range of thresholds, both in the discontinuous and continu
models~see the solid curves!. In panel ~b! we notice that,
although the theoretical expression~36! does not provide an
equally good description of the FSLE, it is nevertheless a
to pinpoint the crossover towards the small-amplitude beh
ior of the perturbation. We will see that the possibility
identifing the largest scale~defined by 1/b1) over which the
linearized dynamics~described by the standard Lyapunov e
ponent! sets in represents a crucial point of our analysis.

It is now natural to ask to what extent Eq.~37! is able to
account for the scaling behavior in the vicinity of the tran
tion. By replacingr with W in Eq. ~12! and t with the first
passage timet, one expects that, at criticality,

W5L2dzg~ t/Lz!. ~38!

Inversion of this equation leads to

t~W!5Lzg21~WLdz!. ~39!

Before mutually comparing the two expressions~37! and
~39!, it should be first stressed that they have been introdu
to address different questions. On the one hand, Eq.~37! is
an approximate expression introduced to account for
crossover towards theW range where the dynamics is con
trolled by linear mechanisms and no scaling behavior sho

FIG. 3. Numerical data for the first passage time~left panel! and
the FSLE~right panel! at the critical point are fitted with Eqs.~37!
and ~36! ~full lines!. Circles refer to D50.01, L5256, ac

50.6055; and squares toD50, L5128, andac50.6063.
7-7
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be expected. On the other hand, Eq.~39! is a rigorous but
implicit statement about the scaling region only.

Compatibility between Eqs.~37! and ~39! requires a
proper dependence ofb0 , b1, andb2 on the systems sizeL,
namely,

b052l@ b̃02b̃1~11dz ln L !#Lz(11d), ~40!

b152lb̃1Lz(11d), ~41!

b25b̃2Lz, ~42!

where b̃0 , b̃1, and b̃2 are suitable positive constants. B
inserting Eq.~42! into Eq. ~37!, one finds that

t~W!5
ln W

l
2Lz@ b̃0WLzd2b̃1WLzd ln~WLdz!1b̃2#,

~43!

from which we see that the first term in the r.h.s. is the o
one which does not follow the required scaling law~39!. In
fact, (lnW)/l, accounts for the linearly stable behavior in
regime where a finite-state model~such as, e.g., the famou
Domany-Kinzel model@16#! would be otherwise characte
ized by a perfect absorption~when a configuration of all 0’s
is attained!.

In order to test the correctness of the whole picture,
have studied the dependence ofb1 and b2 on L. In Fig. 4,
their behavior is plotted at criticality for the discontinuo
and the continuous model: both quantities show a g
agreement with the power law divergence predicted by
~42! @z'1.58 andz(11d)'1.82]. As for the last paramete
b0, given its involved dependence onL and the approximate
character of Eq.~43!, we can only claim that its dependenc
is qualitatively consistent with the theoretical predictio
One of the most important results of our study is the obj
tive identification of a thresholdWc51/ub1u, below which
linear stability analysis holds and its scaling dependence

FIG. 4. Finite-size scaling behavior at the critical points of bo
b1 and b2 for D50 andac50.6063~left panel! and D50.01 and
ac50.6055~right panel!. The dashed lines indicate the best pow
law fit. Left: b1 ~circles! scales asL1.79, while b2 ~triangles! scales
as L1.58. Right: b1 ~squares! scales asL1.82, while b2 ~diamonds!
scales asL1.66.
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L (Wc;L2z). In a model like the cellular automaton con
sidered by Domany and Kinzel@16#, absorption in a finite
system occurs when all sites collapse onto the absorb
state: this means that the minimal meaningful density t
can be considered isrm51/L. In the present context,Wc
plays the role ofrm : below Wc , the critical behavior is
dominated by the linearly stable dynamics. The differen
between the two systems lies in the scaling dependenc
the maximal resolution onL. SinceWc decreases faster tha
1/L this means that, e.g., the scaling range forWc is wider in
the present model than in finite-state systems.

Finally, we comment about the reason why the range
validity of the linear stability analysis can eventually vani
even in models like the continuous RM, where every pert
bation locally smaller thanD should behave linearly. The
reason is thatt(W) is defined as the average first-passa
time: even if the perturbation is homogeneously small, ifL is
sufficiently large some occasional amplification may occ
and drive, on the average, the system out of the linear reg
It is only belowWc that such sporadic resurgencies are s
ficiently rare not to modify the stable linear behavior signi
cantly.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have expounded a partially rigorous
gument to show why the synchronization transition in sp
tially extended systems may belong to the DP universa
class. Although our theoretical considerations are restric
to the discontinuous RM model, a scaling analysis of
first-passage timet(W) suggests that the transition belon
to the DP class also in a finite parameter region of the c
tinuous model. Since direct numerical simulations in t
more physical class of CMLs have been basically restric
to discontinuous maps, we find it wise to test the validity
our conclusions also in the context of continuous, thou
highly-nonlinear maps. Accordingly, we have considered t
lattices of maps coupled as in Eq.~3!; the local map is cho-
sen similar to those defined by Eq.~7!, namely,

f ~x!5H x/a1 , 0<x,a1

12~x2a1!~12a3!/a2 , a1<x,a11a2

a31a4~x2a12a2!, a11a2<x<1,
~44!

with a151/2.7, a350.07, anda450.1. The reason for this
choice is that in Ref.@25# it has been shown that in such
model ~for the same parameter values anda2,0.013 @26#!
nonlinear effects prevail over linear ones. In fact, it was o
served that the propagation velocityvF of finite-amplitude
perturbations@see Eq.~11!# is larger than the propagatio
velocity vL of infinitesimal perturbation~for a definition of
vL , see Refs.@27,28#!. For instance, fora25431024 and
«52/3, vL50.4184, while vF50.5805. In this regime,
upon varying the coupling strengths, synchronization arises
through a continuous phase transition accompanied b
negative transverse Lyapunov exponent and a vanishingvF
at the critical pointsc50.17756 . . . . As can beappreciated
in Fig. 5, where we have plotted the space averaged dif

r
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ence variablew(t) versus time for different values of th
control parameter, the critical decay rate isd50.158
60.01, fully compatible with the expectation for a DP tra
sition. We are thus reinforced in the conjecture that the
scenario is robust and not just restricted to the highly non
neric case of discontinuous maps.

The crucial difficulty to determine the universality cla
for the synchronization transition is that the order parame
~the difference field! can be arbitrarily small. This cast
doubts on the very definition of the zero-difference field a
truly absorbing state. In fact, in a previous paper@15#, it was
speculated that the DP scaling behavior might be restricte
a finite range. The analysis carried on in this paper clari
that the synchronization transition genuinely belongs to
DP universality class: this has been understood from an
jective identification of the thresholdWc , below which the
dynamics is really controlled by linear mechanisms and t
corresponds to an effective contraction. The parametriza
of t(W) introduced to describe the single-map case
greatly helped to unveil the overall scenario since it has cl
fied that the basic effect of the diffusive coupling is to ren
malize the parameters definingt(W) @see Eq.~37!#. Here,
the parameter values~in particularWc) have been inferred by
fitting the numerical data; in the future, it will be desirable
find an analytic, though approximate, way of performing t
renormalization.

Once we have concluded that synchronization ari
through a DP-like transition in a finite parameter region, it
natural to ask how this scenario crosses over to the stan
transition characterized by a vanishing of the Lyapunov
ponent and by the KPZ critical exponents. With reference
Fig. 1, this question amounts to investigating the reg
around the multicritical pointDc . A purely numerical analy-
sis of this region is not feasible in this model, as it wou
require considering systems too large to be effectiv
handled. We are currently studying this problem in a diff
ent context, where preliminary studies indicate the possi
ity to draw quantitative conclusions.

FIG. 5. Log-log plot of the space averaged difference varia
w(t) as a function of time for two coupled CMLs~see the text! and
for different coupling values: from lower to upper, the full line
correspond tos50.178, 0.17756, 0.1775, and 0.177, while the lo
dashed line marks the power law expected for the DP critical
havior. Numerical data have been obtained averaging over 100
alizations of a CML of sizeL5217.
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Finally, since it is known that finite-size Lyapunov exp
nents do depend on the norm, it might be worth consider
q values different from 1, in order to check to what extent t
universality of the transition is preserved when different a
eraging procedures are adopted to assess the amplitude o
global perturbation. In particular, sinceq5` ~corresponding
to the maximum norm! takes care only of the extreme fluc
tuations of a perturbation field, it is not totally obvious th
the behavior of the corresponding first passage time follo
exactly the above described scenario.
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APPENDIX: FIRST PASSAGE TIMES IN THE
DISCONTINUOUS UNCOUPLED RM MODEL

In this appendix we report the analytical calculation of t
first passage time when«50 andD50, to prove Eq.~32!.
Since Wn5an and w(0)51, we have alsot(W0)50. In
order to compute the first passage time through a thres
Wn , we need to know the average time needed to pass f
Wn21 to Wn . With a probability 12aWn21, this can occur
in one time step, if the amplification mechanism is not ac
vated and the synchronization error is contracted by a fa
a. On the other hand, with probabilityaWn21, the amplifi-
cation resets the state variable to the value 1. In this case,
has to wait for the synchronization error to shrink back to
nth threshold, which, by definition, occurs in an average ti
tn21. At this point, the error can either shrink toWn or be
reset again to 1, to start again the process. Altogether,

t~Wn!5t~Wn21!113~12aWn21!1(21t~Wn21!

3~12aWn21!aWn211(312t~Wn21!

3~12aWn21!~aWn21!21 . . .

5t~Wn21!1~12aWn21!

3(
i 50

`

$@11 i 1 i t~Wn21!#~aWn21! i%

5t~Wn21!1~12an!

3H (
i 50

`

~an! i1[ t~Wn2111#(
i 50

`

i ~an! iJ . ~A1!

Summing up the series, one obtains

t~Wn!5
t~Wn21!11

12an
. ~A2!
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